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ABSTRACT 

Shape representation has been a central issue in computer 

graphics and computer-aided geometric design. Many physical 

phenomena involve curves and surfaces that are monotone (in 

some directions) or are convex. The corresponding representation 

problem is given some monotone or convex data, and a monotone 

or convex interpolant is found. Standard interpolants need not 

be monotone or convex even though they may match monotone or 

convex data. 

Several authors including Fritsch, Butland, McAllister, 

McLaughlin, Schumaker and Foley have investigated this pro- 

blem. Most of their methods involve the utilization of quad- 

ratic splines or Hermite polynomials. In our investigation, we 

have adopted a similar approach. These methods require derivative 

information at the given data points. The key to the problem is 

the selection of the derivative values to be assigned to the 

given data points. Schemes for choosing derivatives were exam- 

mined. Along the way, fitting given data points by a conic sect- 

ion has also been investigated as part of the effort to study 

shape-preserving quadratic splines. 
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I. INTRODUCTION 

This project commenced in May 1987 and ended in October 1988, 

which includes a six-month, no-cost extension. Dr. Maria Lam 

was the Principal Investigator. She was assisted by a graduate 

student in the Applied Mathematics program at Hampton University. 

Hampton University has benefited by this project. Through 

this grant, the Principal Investigator was able to obtain release 

time and physical resources to conduct research into the area 

that interests her. This project has been beneficial to the 

graduate program in Applied Mathematics by way of the research 

assistantship made available to the graduate student. The work 

done under this project will constitute part of the graduate 

student's dissertation. The Computer Science Department has also 

benefited. This project helped to fulfil part of the faculty 

research criterion set forth by the ACM Accreditation Board when 

the Department applied for accreditation in the spring of 1988. 

In short, this project has been beneficial to the University in 

several ways. 

Two contributed papers were presented on research done under 

this project. The details of these are given in Sections I1 and 
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11. FITTING DATA BY CONIC SECTIONS 

Data Identification: 

The initial attempt has been to identify 2-D data assuming 

there is some underlying relation among the data points. Owing 

to the diversity of this problem, the study has focused on conic 

sections. A conic section can be represented either algebraically 

or geometrically /1,2/. Some of these representations require 

additional information than just the data points. In the absence 

of this information, in theory, a conic section can be represent- 

ed algebraically by a quadratic relation 

ax2+2bxy+cy2+2dx+2ey+f =O ..... (1) 
or PQPT=O where 

p=cx,Y,ll 

a b d  

Define angle s as 

2s=tan'I(2b/ (a-c) ) 

or 

s= x/4 if a=c. 

Now effect a rotation of the coordinate system given by 

X=XCOS(S) - Ysin(s) 
y=Xsin (s) + Ycos (s) . 

Thus , equation (1) becomes 
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AX2+CY2+2DX+2EY+F=0 ..... (2) 
By examining the coefficiets of equation (2), the type of conic 

section (including the degenerate cases) can be determined /3/. 

Hence a conic section is completely determined by five data 

points since only five of the six coefficients in equation (1) 

are independent. 

One can indirectly solve for these coefficients by the fall- 

owing method /4/. Assume the five data points are (XirYi), 

(xi+lrYi+l) t (xi+2r~i+2) (xi+3r~i+3) and (xi+4r~i+4) Form the 

6x6 matrix M given by 

M =  

The equation 

det (M) =O ..... (3) 
yields a quadratic equation in x, y. When x=xk and y'yk 

(i<=k<=i+4), two of the rows of the matrix are identical, and 

equation (3) is satisfied. This implies that equation ( 3 )  

represents the unique conic passing through these five points. 

However, this algebraic method is found to be numerically 

unstable. The determination of the type of conic section depends 

largely on whether certain coefficients are positive, negative or 
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zero. It is extremely sensitive to small perturbations in coeff- 

icients, which may alter the type of the conic section. When it 

is implemented in a computer program, the situation is even 

worse. Such method routinely involves considerable amount of 

algebraic operations. Their floating-point implementation on a 

computer almost invariably produces perturbations in the coeff- 

icients. The selection of reasonable tolerance is difficult. 

Computer algebras such as MACSYMA and SMP are ideal tools for 

this type of investigations because actual evaluation of 

expressions is delayed until the final step. This leads to 

improved accuracy, but, however it does not eliminate the 

problem. 

Several sets of conic data are generated. For each data set, 

five consecutive data points are used for fitting. A rotation is 

performed to eliminate the mixed term. Then the ceofficients of 

the result are observed. This process is repeated until all 

points of a data set are exhausted. 

Results: 

The results of this study are mixed. As one would expect, it 

is difficult to identify these figures definitely. 

To be identified as data that come from a circle, the gener- 

ated coefficients A ,  C must be equal. This rarely happens. The 

best one can expect is to identify the data as elliptic. Our 

study shows that one set of circular data is identified as ellip- 

tic. A second set is identified as elliptic and hyperbolic with 

the elliptic outnumbering the hyherbolic. A third data set prov- 
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ides similar result. Elliptical data exhibit similar behavior. 

Parabolas are identified by A=O or C=O but not both. For one 

set of parabolic data with the values of x several units apart, 

we are able to identify this trend every time. A second set of 

data, with closely spaced x values, does not fare well at all. 

It is correctly identified as parabola only on two occasions. For 

most part, it has been identified incorrectly as hyperbolic 37 

times and elliptic 5 times. The third set is the most curious 

one. The first 18 fits indicate the data is hyperbolic, this is 

followed by 22 fits that indicate poarabolic data. 

If the data is hyperbolic, the result of algebraic method 

leads one to conclude that the data is either hyperbolic or 

elliptic; however the former conclusion (i.e. hyperbolic) occurs 

more frequently. 

In spite of this lack of positive identification, one pattern 

emerges. Parabolic data are identified as either parabolic or 

hyperbolic. It is the only type of data that will draw parabolic 

conclusion. Circles and ellipses are classified as ellipses or 

hyperbolas with the elliptical conclusion appearing more often 

than the other. This allows one to draw rough estimates on the 

type of conic section that the data could have originated from. 

In summary, when given a set of conic data and algebraic 

method is used in attempt to identify it, one would assume the 

data is hyperbolic initially. If on some occasions the data is 

identified as parabolic and as hyperbolic on other occasions, 

one should accept the data as parabolic. If the data is ident- 
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ified as ellipse and hyperbola with ellipse more frequent than 

hyperbola, one should conclude it to be elliptic. 

Data Fittinq: 

Our next attempt is to fit arbitrarily given data sets by 

conic section. Several data sets including some standard data 

sets to test shape-preserving interpolants are used. The proced- 

ure described in the previous subsection minus the rotation is 

repeated on these data sets. At the end of each fitting, the 

derivative at the point P(i+2) is calculated. These derivative 

values will be examined later. 

When conic data is used, the result is rather consistent if 

consecutive data points are no more than a few units apart. The 

equations of the fits are approximately the same. The changes 

in coefficients are consistent and gradual. However, we 

are unable to recover the equation used to generate the data. 

These fits do not resemble the original equation whatsoever. For 

other data sets, if the five points used to do the fitting do not 

conform to conic shape, the fit will be poor if not downright 

impossible. This is usually indicated by some coefficients having 

values close to zero. The derivatives obtained from these conic 

fits generally preserve the monotone property of the data set. 

They also preserve the convexity of nice, well-behaved data sets, 

but fail under severe testing when this method is applied to some 

standard data sets used to test shape-preserving property of 

interpolants. 
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Data Used: 

The following are some of the data sets used in this invest- 

igation. 

Set 1 

Set 2 

Set 3 
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Set 8 
Akima data 

Set 9 
RNP 14 data (Fritsch and Carlson) 
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111. SHAPE-PRESERVING INTERPOLATION 

The problem is: Given points x1<x2<. . .<Xn and values (Yi}y=l, 
find f such that 

f(xj.1 = Yi i=1,2,...,n 

and f preserves the monotonicity and/or convexity of the data. f 

is usually found by piecing fils together where fi is defined 

over [Xi,Xi+l] and 

fi(xi) = Yir fi(xi+l) = Yi+l* 

Let hi=Xi+l-Xil di=(yi+l-yi)/hi, i=1,2,...,n-i. 

There are two general approaches to this problem. One employs ' 

geometric constructions which could be quite involved /5,6/. The 

other approach uses quadratic or cubic splines, together with 

carefully chosen derivative values or tension parameters /7,8,9/ 

to control the shape of the curve. Quadratic spline is chosen for 

this investigation because quadratic polynomials have one less 

extremum than cubic polynomials, hence better preserve the 

geometric properties of the given data. The derivatives of 

quadratics are linear, this makes them easier to study and 

manipulate. Hence we focus on a simple two-point Hermite inter- 

polation problem involving quadratic polynomials: to find a 

quadratic polynomial h, if possible, such that 

h (Xi) =Yi, h' (Xi)=Si, i=1,2 ..... ( 4 )  

for some preassigned values (Si}T=1. 
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Conditions on the Derivatives: 

Schumaker /6/ proved that there exists a quadratic poly- 

nomial solving this problem if and only if 

..... (5) 

and explicitly defined this polynomial. Moreover, this poly- 

nomial is monotone on I=[xl,x2] if sls2>=0, it is convex on 

I if sl<s2, and concave if ~1x32. 

When condition ( 5 )  fails, Schumaker showed that corres- 

ponding to every u in ( ~ 1 ~ x 2 ) ~  it is possible to choose a 

functional value y* and derivative s* at u, and define a 

quadratic spline over I that satisfies condition ( 4 ) .  If 

sls2>=0, then it is monotone on I if and only if sls*>=O. 

If s1<s2, it is convex on I if and only if s~<=s*<=s~. 

Similarly, if SI>S~, then it is concave if and only if 
q>=s * >=s2. 

Selection of Derivatives: 

The conditions stated in the previous subsection are 

deceptively simple. However, when both monotonicity and 

convexity are taken into consideration, the problam takes 

on a new dimension because one cannot satisfy one condition 

at the expense of the other. One generally approaches this 

problem by first assigning some carefully chosen derivative 

value to each data point, then modify some of these values 

if necessary to satisfy the monotone and/or convexity 
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conditions, then the knots are inserted and their functional 

values and derivatives are determined, and finally the coeff- 

icients of the quadratic polynomials constituting the spline 

are calculated. 

Schumaker /6/ used a weighted average of di-1 and di 

as the value of Si. McAllister and Roulier /5/ used a very 

involved geometric construction to obtain their shape- 

preserving quadratic splines. But their method can be 

identified as Schumaker's formulation with start-up deri- 

vative Si defined as the harmonic mean of di-1, di and a 

modification scheme for Si. DeVore and Yan / 8 /  improved 

upon their modification. 

This investigation has focused on the selection of 

the values of Si. The following method looks promising. 

The derivative Si is defined as: 

di-ldi 
if di,ldi>O ------------- 

Si = tdi-l+(l-t)di I. otherwise 

where 

This formula is symmetric in di-1, di because one can simplify 

(1-t) to obtain 
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This makes the formula independent of the order of the data 

points, i.e. the formula gives the same value when the data 

is processed from the left or from the right. This Si also 

thus the slope of the curve lies between the slopes of 

the two adjacent data segments, 

2. Isil<=min(3ldi,ill31dil) and 

3. si reduces to the harmonic mean of di-1, di when Xi-1, 

Xi, Xi+l are equally spaced (i.e. when hi-l'hi). 

All these properties make it very desirable. 

The investigation was still in progress when this project 

came to an end. It will be carried on under the new project 

as grant NAG-1-948. 

12 



IV. CONTRIBUTED PAPERS 

The following papers were presented on the research 

conducted under this project. 

1. Shape Preserving Interpolants 
Maria H. Lam 
Annual Meeting of Virginia Academy of Science, Norfolk, 
Virginia, May 1987 
Virg. J. Sc., Vol. 38, No. 2, 71 (1987) 

2. Fitting Data by a Conic Section 
Maria H. Lam 
Annual Meeting of Virginia Academy of Science, 
Charlottesville, Virginia, May 1988 
Virg. J. Sc., Vol. 39, No. 2, 103 (1988) 

Abstracts of these papers are shown on following pages. 
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SHAPE PRESERVING INTERPOLANTS 

Maria H. Lam 
Department of Computer Science 

Hampton University 
Hampton, VA 23668 

Recently there has been immense interest in shape-preserving 

interpolations. Most of these algorithms are quite involved. H. 

McLaughlin has proposed a simple, local method to generate inter- 

polants which preserve the monotonicity and convexity of the 

given data. F. Fritsch and J. Butland have proposed a method to 

select values of derivatives at data points such that local mono- 

tone piecewise cubic interpolants will be obtained. These two 

methods are implmented by using computer algebra SMP. They are 

applied to several sets of data. Curves produced by these two 

methods are compared. Some of their properties are discussed. 

(Supported by NASA under grant NAG-1-415 and NAG-1-760) 
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FITTING DATA BY A CONIC SECTION 

Maria H. Lam 
Department of Computer Science 

Hampton University 
Hampton, VA 23668 

ABSTRACT 

A conic section can be represented either algebraically or 

geometrically. In theory, it can be represented algebraically 

by a quadratic relation of the form 

ax2+2bxy+cy2+2dx+2ey+f=0. 

It is completely determined by five data points as only five of 

the six coefficients are independent. These coefficients can be 

determined by solving a system of five linear equations in six 

unknowns indirectly. This method is found to be numerically 

unstable. Its floating point implementation on a computer almost 

invariably produces perturbations in the coefficients which may 

alter the character of the conic section. Several sets of conic 

data are generated. For each data set, five consecutive data 

points are used for fitting. A rotation is performed to eliminate 

the mixed term. The coefficients of the result are observed and 

compared. This process is repeated until all points of a data 

set is exhausted. Result of this research will be presented. 

(Supported by NASA under grant NAG-1-760) 
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